3.1.81 \(\int \frac {1}{(a+b x^2) (c+d x^2)^{3/2} \sqrt {e+f x^2}} \, dx\) [81]

Optimal. Leaf size=344 \[ -\frac {d^{3/2} \sqrt {e+f x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{\sqrt {c} (b c-a d) (d e-c f) \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac {d \sqrt {e} (b d e-2 b c f+a d f) \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c (b c-a d)^2 \sqrt {f} (d e-c f) \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {b^2 c^{3/2} \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a \sqrt {d} (b c-a d)^2 e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

[Out]

-d*(a*d*f-2*b*c*f+b*d*e)*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticF(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2)
,(1-d*e/c/f)^(1/2))*e^(1/2)*(d*x^2+c)^(1/2)/c/(-a*d+b*c)^2/(-c*f+d*e)/f^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/
(f*x^2+e)^(1/2)-d^(3/2)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),
(1-c*f/d/e)^(1/2))*(f*x^2+e)^(1/2)/(-a*d+b*c)/(-c*f+d*e)/c^(1/2)/(d*x^2+c)^(1/2)/(c*(f*x^2+e)/e/(d*x^2+c))^(1/
2)+b^2*c^(3/2)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticPi(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),1-b*c/a/
d,(1-c*f/d/e)^(1/2))*(f*x^2+e)^(1/2)/a/(-a*d+b*c)^2/e/d^(1/2)/(d*x^2+c)^(1/2)/(c*(f*x^2+e)/e/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 344, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {560, 553, 539, 429, 422} \begin {gather*} \frac {b^2 c^{3/2} \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a \sqrt {d} e \sqrt {c+d x^2} (b c-a d)^2 \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac {d^{3/2} \sqrt {e+f x^2} E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{\sqrt {c} \sqrt {c+d x^2} (b c-a d) (d e-c f) \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac {d \sqrt {e} \sqrt {c+d x^2} (a d f-2 b c f+b d e) F\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c \sqrt {f} \sqrt {e+f x^2} (b c-a d)^2 (d e-c f) \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^2)*(c + d*x^2)^(3/2)*Sqrt[e + f*x^2]),x]

[Out]

-((d^(3/2)*Sqrt[e + f*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(Sqrt[c]*(b*c - a*d)*(d*e
- c*f)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])) - (d*Sqrt[e]*(b*d*e - 2*b*c*f + a*d*f)*Sqrt[c +
 d*x^2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*(b*c - a*d)^2*Sqrt[f]*(d*e - c*f)*Sqrt[(e*
(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (b^2*c^(3/2)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcT
an[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(a*Sqrt[d]*(b*c - a*d)^2*e*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*
(c + d*x^2))])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 539

Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[(b*e - a*
f)/(b*c - a*d), Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[Sqrt[a + b
*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]

Rule 553

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[c*(Sqrt[e +
 f*x^2]/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((e + f*x^2)/(e*(c + d*x^2)))]))*EllipticPi[1 - b*(c/(a*d)), Ar
cTan[Rt[d/c, 2]*x], 1 - c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rule 560

Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Dist[b^2/(b*c
- a*d)^2, Int[(c + d*x^2)^(q + 2)*((e + f*x^2)^r/(a + b*x^2)), x], x] - Dist[d/(b*c - a*d)^2, Int[(c + d*x^2)^
q*(e + f*x^2)^r*(2*b*c - a*d + b*d*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && LtQ[q, -1]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}} \, dx &=\frac {b^2 \int \frac {\sqrt {c+d x^2}}{\left (a+b x^2\right ) \sqrt {e+f x^2}} \, dx}{(b c-a d)^2}-\frac {d \int \frac {2 b c-a d+b d x^2}{\left (c+d x^2\right )^{3/2} \sqrt {e+f x^2}} \, dx}{(b c-a d)^2}\\ &=\frac {b^2 c^{3/2} \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a \sqrt {d} (b c-a d)^2 e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac {d^2 \int \frac {\sqrt {e+f x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{(b c-a d) (d e-c f)}-\frac {(d (b d e-2 b c f+a d f)) \int \frac {1}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{(b c-a d)^2 (d e-c f)}\\ &=-\frac {d^{3/2} \sqrt {e+f x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{\sqrt {c} (b c-a d) (d e-c f) \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac {d \sqrt {e} (b d e-2 b c f+a d f) \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c (b c-a d)^2 \sqrt {f} (d e-c f) \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {b^2 c^{3/2} \sqrt {e+f x^2} \Pi \left (1-\frac {b c}{a d};\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {c f}{d e}\right )}{a \sqrt {d} (b c-a d)^2 e \sqrt {c+d x^2} \sqrt {\frac {c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.40, size = 365, normalized size = 1.06 \begin {gather*} \frac {\sqrt {\frac {d}{c}} \left (a c d \left (\frac {d}{c}\right )^{3/2} e x+a c d \left (\frac {d}{c}\right )^{3/2} f x^3+i a d^2 e \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )+i a d (-d e+c f) \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )+i b c d e \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} \Pi \left (\frac {b c}{a d};i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )-i b c^2 f \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} \Pi \left (\frac {b c}{a d};i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )\right )}{a d (-b c+a d) (d e-c f) \sqrt {c+d x^2} \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^2)*(c + d*x^2)^(3/2)*Sqrt[e + f*x^2]),x]

[Out]

(Sqrt[d/c]*(a*c*d*(d/c)^(3/2)*e*x + a*c*d*(d/c)^(3/2)*f*x^3 + I*a*d^2*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e
]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + I*a*d*(-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e
]*EllipticF[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + I*b*c*d*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticP
i[(b*c)/(a*d), I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] - I*b*c^2*f*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*Ellipt
icPi[(b*c)/(a*d), I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)]))/(a*d*(-(b*c) + a*d)*(d*e - c*f)*Sqrt[c + d*x^2]*Sqrt[
e + f*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 413, normalized size = 1.20

method result size
default \(\frac {\left (-\sqrt {-\frac {d}{c}}\, a \,d^{2} f \,x^{3}+\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a c d f -\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a \,d^{2} e +\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a \,d^{2} e -\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) b \,c^{2} f +\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right ) b c d e -\sqrt {-\frac {d}{c}}\, a \,d^{2} e x \right ) \sqrt {f \,x^{2}+e}\, \sqrt {d \,x^{2}+c}}{c a \left (a d -b c \right ) \sqrt {-\frac {d}{c}}\, \left (c f -d e \right ) \left (d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e \right )}\) \(413\)
elliptic \(\frac {\sqrt {\left (d \,x^{2}+c \right ) \left (f \,x^{2}+e \right )}\, \left (-\frac {\left (d f \,x^{2}+d e \right ) d x}{c \left (c f -d e \right ) \left (a d -b c \right ) \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (d f \,x^{2}+d e \right )}}+\frac {\sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right ) d}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}\, c \left (a d -b c \right )}+\frac {d^{2} e \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{c \left (c f -d e \right ) \left (a d -b c \right ) \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {b \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticPi \left (x \sqrt {-\frac {d}{c}}, \frac {b c}{a d}, \frac {\sqrt {-\frac {f}{e}}}{\sqrt {-\frac {d}{c}}}\right )}{\left (a d -b c \right ) a \sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}\right )}{\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\) \(419\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-(-d/c)^(1/2)*a*d^2*f*x^3+((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a
*c*d*f-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e+((d*x^2+c)/c)
^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d^2*e-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)
^(1/2)*EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b*c^2*f+((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^
(1/2)*EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b*c*d*e-(-d/c)^(1/2)*a*d^2*e*x)*(f*x^2+e)^(
1/2)*(d*x^2+c)^(1/2)/c/a/(a*d-b*c)/(-d/c)^(1/2)/(c*f-d*e)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*(d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b x^{2}\right ) \left (c + d x^{2}\right )^{\frac {3}{2}} \sqrt {e + f x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)/(d*x**2+c)**(3/2)/(f*x**2+e)**(1/2),x)

[Out]

Integral(1/((a + b*x**2)*(c + d*x**2)**(3/2)*sqrt(e + f*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)/(d*x^2+c)^(3/2)/(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)*(d*x^2 + c)^(3/2)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{\left (b\,x^2+a\right )\,{\left (d\,x^2+c\right )}^{3/2}\,\sqrt {f\,x^2+e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)*(c + d*x^2)^(3/2)*(e + f*x^2)^(1/2)),x)

[Out]

int(1/((a + b*x^2)*(c + d*x^2)^(3/2)*(e + f*x^2)^(1/2)), x)

________________________________________________________________________________________